Exosome-mediated long noncoding RNA (lncRNA) PART1 suppresses malignant progression of oral squamous cell carcinoma via miR-17-5p/SOCS6 axis

Authors: YUHENG DU, YANJIE SHUAI, HONGLING WANG, HUISHENG LI, YAJING LI

Abstract: Background/aim: Exosomes derived from oral squamous cell carcinoma (OSCC) could modulate OSCC development. This study aimed to explore effects of exosome-mediated lncRNA PART1 on OSCC cells. Materials and methods: This study was performed in Tianjin Medical University Cancer Institute from February 2021 to March 2022. Bioinformatic analysis was performed on the public database GEPIA (http://gepia.cancer-pku.cn/). Exosomes isolated from cell lines squamous cell carcinoma 9 (SCC9) and Centre Antoine Lacassagne-27 (CAL27) were identified by transmission electron microscope and western blot. Exosome-mediated lncRNA PART1, microRNA-17-5p(miR-17-5p) and suppressor of cytokine signaling 6(SOCS6) RNA expressions were assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Cell counting kit- 8(CCK-8), caspase-3 activity, and flow cytometry were applied to evaluate OSCC cell viabilities and apoptosis. Meanwhile, OSCC cell migratory ability and invasiveness were evaluated using transwell assay. Bindings between miR-17-5p and lncRNA PART1 or SOCS6 were validated using the luciferase reporter test. Western blot was used for detecting the protein levels of SOCS6, phosphorylated signal transducer and activator of transcription 3 (STAT3) and STAT3. Results: According to GEPIA, lncRNA PART1 was downregulated in OSCC tissue samples and cells, and it had a positive correlation with the good prognosis of Head and neck squamous cell cancer (HNSCC) patients. After the exosomes from OSCC cells were isolated and verified, PART1 was then confirmed to be secreted by exosomes. Further, overexpression of exosome-mediated lncRNA PART1 inhibited OSCC cell viabilities, migration, and invasiveness but facilitated OSCC cell apoptosis. PART1 upregulated SOCS6 through sponging miR-17-5p. Moreover, exosome-mediated lncRNA PART1 suppressed the phosphorylation of STAT3. Conclusion: Exosome-mediated lncRNA PART1 could mediate the OSCC progression via miR-17-5p/SOCS6 axis in vitro, suggesting that lncRNA PART1 might be a target for treating OSCC.

Keywords: LncRNA PART1, OSCC, miR-17-5p, SOCS6, exosomes

Full Text: PDF