Eta quotients of level $\mathbf{12}$ and weight $\mathbf{1}$

Authors: AYŞE ALACA, ŞABAN ALACA, ZAFER SELCUK AYGIN

Abstract: We find all the eta quotients in the spaces $M_1 \Big(\Gamma_0(12), \left(\frac{d}{\cdot}\right) \Big)$ ($d=-3, -4$) of modular forms and determine their Fourier coefficients, where $\left(\frac{d}{\cdot}\right)$ is the Legendre-Jacobi-Kronecker symbol.

Keywords: Dedekind eta function, eta quotients, Eisenstein series, modular forms, cusp forms, Fourier coefficients, Fourier series

Full Text: PDF