Modularly equidistant numerical semigroups

Authors: JOSÉ CARLOS ROSALES, MANUEL BAPTISTA BRANCO, MÁRCIO ANDRE TRAESEL

Abstract: IfS is a numerical semigroup and s ∈ S , we denote by next$_{S}$(s) = min {x ∈ S | s < x}. Leta be an integer greater than or equal to two. A numerical semigroup is equidistant modulo a if next$_{S}$((s) - s - 1 is a multiple of a for every s ∈ S . In this note, we give algorithms for computing the whole set of equidistant numerical semigroups modulo a with fixed multiplicity, genus, and Frobenius number. Moreover, we will study this kind of semigroups with maximal embedding dimension.

Keywords: Embedding dimension, Frobenius number, genus, multiplicity, modularly equidistant numerical semigroups, MED semigroups, numerical semigroup

Full Text: PDF