Authors: MÜMÜN CAN
Abstract: In this paper, we are interested in higher-order character Dedekind sum% \[ \sum\limits_{v=0}^{ck-1}\chi_{1}\left( v\right) \mathcal{B}_{p,\chi_{2}% }\left( a\frac{v+z}{c}+x\right) \mathcal{B}_{q}\left( b\frac{v+z}% {ck}+y\right) ,\text{ }a,b,c\in\mathbb{N} \text{ and }x,y,z\in\mathbb{R}, \] where $\chi_{1}$ and $\chi_{2}$ are primitive characters of modulus $k,$ $\mathcal{B}_{p}\left( x\right) $ and $\mathcal{B}_{p,\chi_{2}}\left( x\right) $ are Bernoulli and generalized Bernoulli functions, respectively. We employ the Fourier series technique to demonstrate reciprocity formulas for this sum. Derived formulas are analogues of Mikolas' reciprocity formula. Moreover, we offer Petersson--Knopp type identities for this sum.
Keywords: Dedekind sum, Bernoulli polynomials, Fourier series
Full Text: PDF