Authors: TEWFIK GHOMARI, YOUSSEF MALIKI
Abstract:
Let $(M,g)$ be a compact Riemannian manifold. In this paper, we prove Struwe-type decomposition formulas for Palais-Smale sequences of functional energies corresponding to the equation:
\begin{equation*}
\Delta_{g,p}u-\frac{h(x)}{(\rho_{x_{o}}(x))^{s}}\left|
u\right|^{p-2}u =f(x)\left| u\right|^{p^{\ast}-2}u,
\end{equation*}
where $\Delta_{g,p} $ is the $p-$Laplacian operator,
$p^*=\frac{np}{n-p}$, $0
Keywords: Riemannian manifolds, Yamabe equation, P-Laplacian, Sobolev exponent, Hardy potential, blow up analysis, bubbles
Full Text: PDF