Authors: NESLİHAN UYANIK, SHİGEYOSHİ OWA

Abstract: For analytic functions $f\left( z\right) $ in the class $A_{n},$ fractional calculus (fractional integrals and fractional derivatives) $D_{z}^{\lambda }f\left( z\right) $ of order $\lambda $ are introduced. Applying $% D_{z}^{\lambda }f\left( z\right) $ for $f\left( z\right) \in A_{n},$ we introduce the interesting subclass $A_{n}\left( \alpha _{m},\beta ,\rho ,\lambda \right) $ of $A_{n}.$ The object of this paper is to discuss some properties of $f\left( z\right) $ concerning $D_{z}^{\lambda }f\left( z\right) .$

Keywords: Analytic function, fractional integral, fractional derivative, Miller and Mocanu lemma

Full Text: PDF