Authors: OREST ARTEMOVYCH
Abstract: We prove that a torsion group G with all subgroups subnormal is a nilpotent group or G=N(A_1 \times \cdots \times A_n) is a product of a normal nilpotent subgroup N and p_i-subgroups A_i, where A_i=A_1^{(i)} \cdots A_{m_i}^{(i)} \lhd G, A_j^{(i)} is a Heineken--Mohamed type group, and p_1, \ldots, p_n are pairwise distinct primes (n\geq 1; i=1, ... ,n; j=1, ... ,m_i and m_i are positive integers).
Keywords: Nilpotent group, indecomposable group, Heineken-Mohamed type group
Full Text: PDF