Authors: SELİN TÜRKMEN, NEŞET AYDIN
Abstract: Let R be a ∗-prime ring with characteristic not 2, σ,τ:R→R be two automorphisms, U be a nonzero ∗-(σ,τ)-Lie ideal of R such that τ commutes with ∗, and a,b be in R. (i) If a∈S∗(R) and [U,a]=0, then a∈Z(R) or U⊂Z(R). (ii) If a∈S∗(R) and [U,a]σ,τ⊂ Cσ,τ, then a∈Z(R) or U⊂Z(R). (iii) If U⊄ and U\not \subset C_{\sigma,\tau}, then there exists a nonzero \ast-ideal M of R such that \left[ R,M\right] _{\sigma,\tau}\subset U but \left[ R,M\right] _{\sigma,\tau} \not \subset C_{\sigma,\tau}. \left( iv\right) Let U\not \subset Z\left( R\right) and~U\not \subset C_{\sigma,\tau}. If aUb=a^{\ast }Ub=0, then a=0 or b=0.
Keywords: \ast-prime ring, \ast-\left( \sigma,\tau\right) -Lie ideal, \left( \sigma,\tau\right) -derivation, derivation
Full Text: PDF