Authors: BANU LOKMAN, MUSTAFA MURAT KÖKSALAN
Abstract: We develop an evolutionary algorithm for multiobjective combinatorial optimization problems. The algorithm aims at converging the preferred solutions of a decision-maker. We test the performance of the algorithm on the multiobjective knapsack and multiobjective spanning tree problems. We generate the true nondominated solutions using an exact algorithm and compare the results with those of the evolutionary algorithm. We observe that the evolutionary algorithm works well in approximating the solutions in the preferred regions.
Keywords: Evolutionary algorithm, preferred region, nondominated frontier, multiobjective combinatorial optimization
Full Text: PDF