Authors: JASRUL JAMANI JAMIAN, HAZLIE MOKHLIS, MOHD WAZIR MUSTAFA, MOHD NOOR ABDULLAH, MUHAMMAD ARIFF BAHARUDDIN
Abstract: The appropriate output of distributed generation (DG) in a distribution network is important for maximizing the benefit of the DG installation in the network. Therefore, most researchers have concentrated on the optimization technique to compute the optimal DG value. In this paper, the comparative learning in global particle swarm optimization (CLGPSO) method is introduced. The implementation of individual cognitive and social acceleration coefficient values for each particle and a new fourth term in the velocity formula make the process of convergence faster. This new algorithm is tested on 6 standard mathematical test functions and a 33-bus distribution system. The performance of the CLGPSO is compared with the inertia weight particle swarm optimization (PSO) and evolutionary PSO methods. Since the CLGPSO requires fewer iterations, less computing time, and a lower standard deviation value, it can be concluded that the CLGPSO is the superior algorithm in solving small-dimension mathematical and simple power system problems.
Keywords: Distributed generator, particle swarm optimization, power loss reduction, standard mathematical test function
Full Text: PDF