Authors: ZEKERİYA UYKAN, RIKU JANTTI
Abstract: In this paper, we study the location optimization problem of remote antenna units (RAUs) in generalized distributed antenna systems (GDASs). We propose a composite vector quantization (CVQ) algorithm that consists of unsupervised and supervised terms for RAU location optimization. We show that the CVQ can be used i) to minimize an \textit{upper bound} to the cell-averaged SNR error for a desired/demanded location-specific SNR function, and ii) to maximize the cell-averaged \textit{effective} \textit{SNR}. The CVQ-DAS includes the standard VQ, and thus the well-known squared distance criterion (SDC) as a special case. Computer simulations confirm the findings and suggest that the proposed CVQ-DAS outperforms the SDC in terms of cell-averaged ``effective SNR''.
Keywords: Distributed antenna system, antenna allocation problem, clustering, squared distance criterion
Full Text: PDF