The effect of fuel on the physiochemical properties of ZnFe2O4 synthesized by solution combustion method

Authors: FAHMA RIYANTI, WIDIA PURWANINGRUM, NOVA YULIASARI, SASMITA PUTRI, NABILA APRIANTI, POEDJI LOEKITOWATI HARIANI

Abstract: The synthesis of ZnFe2O4 nanoparticles was performed using the solution combustion method with three types of fuel, namely urea, glycine, and ethylenediamine tetra-acetic acid (EDTA) with precursors (Zn(NO3)2.6H2O and Fe(NO3)3.9H2O. The combustion process was conducted in an open space at 300 °C for ± 1 h, resulting in a brownish-black ZnFe2O4. Meanwhile, the fuel type used in the process affects the physicochemical properties of ZnFe2O4. XRD analysis showed that ZnFe2O4 synthesized using urea, glycine, and EDTA had spinel structures with crystal sizes of 10.19, 20.34, and 27.21 nm, respectively. The FTIR spectra of ZnFe2O4 synthesized using the three fuel types had Zn-O and Fe-O stretching vibrations. Furthermore, the morphology of ZnFe2O4 synthesized using urea was more homogeneous than glycine and EDTA. The saturation magnetization of ZnFe2O4 synthesized using EDTA was 54.63 emu/g compared to glycine and urea, 50.93 and 44.73 emu/g, respectively. Finally, the surface area of synthesized ZnFe2O4 using urea, glycine, and EDTA were 116.4, 100.6, and 94.2 m2/g, respectively.

Keywords: Solution combustion, ZnFe2O4, urea, glycine, EDTA, physicochemical

Full Text: PDF