Authors: İSMAİL BURAK BAĞUÇ, MEHMET YURDERİ, GÜLŞAH SAYDAN KANBEROĞLU, AHMET BULUT
Abstract: Ruthenium nanoparticles stabilized by a hydrotalcite framework (Ru/HTaL) were prepared by following a 2-step procedure comprising a wet-impregnation of ruthenium(III) chloride precatalyst on the surface of HTaL followed by an ammonia-borane (NH$_{3}$BH$_{3}$) reduction of precatalyst on the HTaL surface all at room temperature. The characterization of Ru/HTaL was done by using various spectroscopic and visualization methods including ICP-OES, P-XRD, FTIR, $^{11}$B NMR, XPS, BFTEM, and HRTEM. The sum of the results gained from these analyses has revealed the formation of well-dispersed and highly crystalline ruthenium nanoparticles with a mean diameter of 1.27 ± 0.8 nm on HTaL surface. The catalytic performance of Ru/HTaL in terms of activity, selectivity, and stability was investigated in the methanolysis of ammonia-borane (NH$_{3}$ BH$_{3}$, AB), which has been considered as one of the most promising chemical hydrogen storage materials. It was found that Ru/HTaL can catalyse methanolysis of AB effectively with an initial turnover frequency (TOF) value of 392.77 min-$^{-1}$ at conversion (>95%) even at room temperature. Moreover, the catalytic stability tests of Ru/HTaL in AB methanolysis showed that Ru/HTaL acts as a highly stable and reusable heterogeneous catalyst in this reaction by preserving more than 95% of its initial activity even at the 5th recycle.
Keywords: Ammonia-borane, methanolysis, hydrotalcite, ruthenium, nanoparticles
Full Text: PDF